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Assessment of different health parameters including pain level,
physiological parameters such as blood pressure, heart rate,
and hemoglobin level is important for multiple medical
conditions [Lucey, 2012; Scully, 2012]

The validation of the algorithms are also needed for
application in a clinical setting.

With a rising cost of health care and increasing number of
aging population we need affordable solutions for health care
[Kaplan, 2006; Boulos 2011] and at the same time improve
patient outcome.

.

Mohammad Adibuzzaman Smart Monitoring of Health Parameters



Background
Affect

Pain Level
Arterial Blood Pressure

Hemoglobin Level
Evaluation for Clinical Application

Conclusion

Eigenvalues
Principal Component Analysis (PCA)
Eigenvalues of Markov Chain

Background

Mohammad Adibuzzaman Smart Monitoring of Health Parameters



Background
Affect

Pain Level
Arterial Blood Pressure

Hemoglobin Level
Evaluation for Clinical Application

Conclusion

Eigenvalues
Principal Component Analysis (PCA)
Eigenvalues of Markov Chain

Eigenvalues: Definition

Eigenvalue is defined as

B × v = λ× v

Eigenvalues have a very interesting property: when multiplied by
the eigenvalue, eigenvectors do not rotate.
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Eigenvalues Contd.

Any vector can be represented by a basis whose reference vectors
are eigenvectors of the transition matrix.

B i × v = B i × v1 + B i × v2 = λ1
i × v1 + λ2

i × v2
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Figure: The eigenvectors corresponding to eigenvalues less than
zero converge to zero when B is repeatedly applied. λ1 is less than
one and λ2 is greater than one.
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Principal Component Analysis (PCA)

PCA highlights the similarities and dissimilarities in a
multidimensional data set.
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Figure: The red dashed lines represent the eigenvectors of the covariance
matrix.v1 is the Principal Component here.
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Markov Chain

A Markov process is a mathematical process that transits from one
state to the other and is considered memoryless.

Figure: A simple Markov Chain with three states and their transition
probabilities.

P =

0.72 0.28 0
0.67 0.30 0.03
0.25 0.75 0
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Eigenvalues of Markov Chain

For any transition probability matrix of a markov chain, there
exists an unique eigenvector, π for which the eigenvalue is 1.
Because all the other eigenvalues are less than one, after n
steps, where n is sufficiently large, the stationary distribution
contains only the eigenvector corresponding to one.

P × π = π

For a 2× 2 matrix,

P i × v = P i × v1 + P i × v2 = λ1
i × v1 +

0(λ2<1)︷ ︸︸ ︷
λ2

i × v2

= 1i × v1

= v1
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Affect (Emotion): Detection of Affect
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Motivation

Human-computer/human-robot interaction

Robotics

Application in user interface design

Learning environment

Boredom, Frustration

Autism spectrum

Early intervention for stress reduction

Mental Health Monitoring
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Our Approach: Russell’s Circumplex Model
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Our Approach: Multimodal Algorithm

Selecting modalities
Valence

Facial Image

Arousal

Heart Rate
Pupil Size
Energy Spent

Building classifier for each of the modalities

Evaluate the performance of the single modalities

Fusing the result of different modalities

Validate the performance of the multimodal system
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Our Approach: Data Collection Tool

Figure: Annotation of emotion data: (a) Annotation of affective state
using Russells 2D emotional space. (b) Annotation of affective state
using radio button.
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Our Approach: Algorithm

Facial Image

Eigenface method

Energy Spent

Energy =
∫ t0+T

t0
|ax |+ |ay |+ |az |dt

Multimodal Fusion

Näıve Bayes Fusion
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Results: Unimodal System

a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 7 0 0 1 0 | b=anger

1 0 7 0 0 0 | c=sad

1 0 0 7 0 0 | d=disgust

1 0 0 0 7 0 | e=fear

1 0 0 0 0 7 | f=surprise

Table: Confusion matrix for facial expression classifier.
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Results: Multimodal System

a b c d e f ←Classified as

8 0 0 0 0 0 | a=happy

0 8 0 0 0 0 | b=anger

1 0 7 0 0 0 | c=sad

0 0 0 7 0 1 | d=disgust

0 0 0 0 8 0 | e=fear

0 0 0 1 0 7 | f=surprise

Table: Confusion matrix using Näıve Bayes classifier.
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Results: Discussion

System performance improved from 89 percent to 93 percent.
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Results: Summary

Multimodal affect detection has better accuracy than
uni-modal system.

Russel’s Cirumplex model can be used for designing
multimodal system.
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Pain Level: Detection of Pain
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Motivation

In excess of 8 million individuals globally die each year from
cancer

Three-quarters of these are reported to suffer from pain

A primary barrier for treatment is inadequate information on
pain intensity [Grossman, 2004]

Medication adjustment with pain significantly improves
patient outcome [Gawande, 2010]

Pain assessment is important for

Remote monitoring of pain
ICU Patients
Neonates
Verbally impaired patients

Mohammad Adibuzzaman Smart Monitoring of Health Parameters



Background
Affect

Pain Level
Arterial Blood Pressure

Hemoglobin Level
Evaluation for Clinical Application

Conclusion

Motivation
Our Approach
Results

Our Approach: Data

Longitudinal Study
Subject Training Set Test Set Total

A 6 8 14
B 36 80 116
C 36 124 160
D 6 6 12
E 36 78 114
F 6 32 38

Cross-sectional Study
Location Training Set Test Set

Bangladesh 454 131
Nepal 454 311

United States 454 71

Table: Image data set size for longitudinal and cross sectional study. The
entire data set for longitudinal study was used as the training data set for
the cross sectional study.
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Our Approach: Software Architecture
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Eigenvalues and Eigenfaces
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Our Approach: Closest Weight Vector of the Image

Euclidean distance

Angular distance

Multi-class support vector machine
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Results: First phase–longitudinal study

Subject B Subject C Subject E
Cross Val Angular SVM Angular SVM Angular SVM
1 0.95 1.07 0.71 0.88 1.06 0.64
2 1.02 1.142 0.71 0.77 1.01 0.67
3 0.79 0.81 0.75 0.80 1.04 0.68
4 1 1.01 0.8 0.78 0.98 0.66
5 1.12 0.97 0.83 0.83 0.98 0.72
6 1.07 0.86 0.707 0.94 1.22 0.66
7 0.88 0.94 0.82 0.87 1.09 0.62
8 0.83 0.91 0.73 0.92 1.12 0.75
9 0.92 0.73 0.78 0.82 1.04 0.53
10 1.04 1.05 0.79 0.78 0.96 0.63

Mean
±SD

0.96± 0.10
0.94 ± 0.12 0.76 ± 0.04 0.84 ± 0.06 1.05 ± 0.08 0.66 ± 0.05

Table: Mean absolute error for a 10 fold cross validation for the
longitudinal study.
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Results: First phase–longitudinal study

Angular SVM
Sub Sensitivity Specificity Sensitivity Specificity

L M H L M H L M H L M H
B

0.18 0.91
NaN 0.91 0.18 1 0.18 0.89 NaN 0.89 0.18 1

C
1 0

NaN 0 1 1 0.97 0.04 NaN 0.04 0.97 1

E 0.11 0.88 NaN 0.88 0.21 1 0.24 0.97 NaN 0.97 0.24 1
Mean
±SD

0.43
±0.45

0.60
±0.44

NaN 0.60
±0.44

0.46
±0.45

1
±0

0.46
±0.37

0.60
±0.43

NaN 0.63
±0.43

0.46
±0.37

1
±
0

Table: Mean sensitivity and specificity for the longitudinal study. Low(L),
Medium(M) and High(H) pain levels are similar to the Brief Pain
Inventory (BPI) suggested by World Health Organization (WHO).
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Results: Discussion

Figure: Fraction of the number of images for the two different classes
(low and medium) and the sensitivity for each class for the 10 fold cross
validation during the longitudinal study.
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Results: Second phase–cross-sectional study

Angular SVM

Sensitivity Specificity Sensitivity Specificity

L M H L M H L M H L M H

0.55 0.39 0.02 0.40 0.58 0.99 0 1 0 1 0 1

Table: Sensitivity and specificity for the cross-sectional study when the
entire data set from the longitudinal study was used as the training data
set.
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Results: Summary

A personalized model works better for pain detection.

The training data should represent the application scenario.

Low, medium and high pain levels: similar to Brief Pain
Inventory (BPI) and possible for clinical application.
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Arterial Blood Pressure: Identification of Early Markers of
Hemorrhage
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Motivation

Hemorrhage is the cause of 40% of deaths after a traumatic
injury in the United States [Kauvar, 2006].
One of the limitations to treating hemorrhage

Vital signs can appear normal until a significant blood loss has
occurred.

In a mass casualty situation
Identifying patients that need immediate care.

In a combat situation
Risks the life of the paramedics.

Existing algorithms that use mean arterial pressure or heart
rate variability has limitations such as:

Mean arterial pressure does not change due to the
compensating mechanism until at a later stage.
Heart rate variability changes may depend on individual
responses.
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Our Approach: Data

This project is supported by the Medical Countermeasures
Initiative (MCMi) and by an appointment to the Research
Participation Program at the Center for Devices and
Radiological Health administered by the Oak Ridge Institute
for Science and Education through and interagency agreement
between the U.S. Department of Energy and the U.S. Food
and Drug administration.

Data is provided by slow hemorrhage of pigs from the
University of Texas Medical Branch at Galveston (UTMB).
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Our Approach: Algorithm

Figure: (a) Mean Arterial Pressure of a pig. (b) A sample Markov Chain
Model with the transition probabilities and the corresponding matrix. (c)
Eigenvalues of a transition probability matrix in complex plane with angle
and absolute value.
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Results: Case Study– Pig 515

One hemorrhage

6.3 mL/min or 0.3 mL/min/kg
Weight 21 kg
First and only hemorrhage: total time 29 minutes
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Results: Change of Signals for Pig 515
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Results: Correlation coefficient

Animal Heart Rate
Systolic Blood
Pressure

Pulse Pressure Shock Index

A -0.10 0.47 0.56 -0.59
B -0.99 0.94 0.98 -0.93
C -0.09 0.96 0.93 -0.95
D -0.99 0.98 0.93 -0.98
E 0.36 0.78 -0.31 - 0.82
F -0.76 0.97 0.96 -0.98
G -0.98 -0.66 -0.95 - 0.97

Group Statistics
Median -0.76 0.94 0.93

-0.95
Min -0.99 -0.66 -0.95 -0.98
Max 0.36 0.98 0.98 -0.59

Table: Correlation coefficients between mixing rate and vital signs during
hemorrhage. Shock index is systolic blood pressure divided by heart rate.
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Results: Summary
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Figure: The vital signs (heart rate, systolic blood pressure, and shock
index) for each animal along with the mixing rate during hemorrhage.
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Results: Summary

The mixing rate of the Markov chain is strongly correlated
with shock index.

The exact reason for the change in the mixing rate might be
due to the morphological change in the arterial blood pressure
due to hemorrhage and needs to be investigated.

It has the potential to be used in clinical setting for detecting
hemorrhage or predicting shock.
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Hemoglobin Level: Assessment of Hemoglobin From
Mini-video Image
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Is an important vital sign for multiple medical conditions
including sickle cell disease (SCD).

The estimated cost of care for people with sickle cell disease
in the United States is 1.1 Billion dollars.

Per-patient rate of admission to the ED and hospital is 6
times per year.

Accurate hemoglobin level detection can reduce number of
hospital admission.
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Our Approach: Finger-tip Video
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Our Approach: Noninvasive Hemoglobin Level

Figure: We propose to use a calibration table for blood hemoglobin level
and pixel intensity

Mohammad Adibuzzaman Smart Monitoring of Health Parameters



Background
Affect

Pain Level
Arterial Blood Pressure

Hemoglobin Level
Evaluation for Clinical Application

Conclusion

Motivation
Our Approach
Results

Our Approach: Data
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Figure: Distribution Of Hemoglobin Level
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Results: Distribution of Hemoglobin Level
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Figure: Hemoglobin Level And Red Pixel Intensity
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Results: Proposed Model

Research Hypothesis (1)

The red pixel intensity of finger tip video image is positively
correlated with hemoglobin level.

Research Hypothesis (2)

The red pixel intensity of finger tip video is positively
correlated with oxygenation.

Research Hypothesis (3)

The red pixel intensity of finger tip video is negatively
correlated with skin thickness.
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RPI = β0Hem + β1Oxy + β2ST + ε

Where

RPI =Red Pixel Intensity

Hem =Hemoglobin Level

Oxy =Oxygenation

ST =Skin Thickness

ε = Error
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Results: Summary

Hemoglobin level might be correlated with red pixel intensity.

A large pilot study is needed.

Work in progress with Blood Center of Wisconsin and Medical
College of Wisconsin.
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Evaluation: Evaluation of Machine Learning Algorithms for
Clinical Application.
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Motivation

Algorithm development is not enough.

Performance evaluation of these algorithms are critical to
provide warnings with high sensitivity and reduced numbers of
false alarms to address alarm fatigue for clinical application.

We investigated early warning systems for evaluation.

Early warning systems include algorithms that use multiple
vital signs to monitor patients and recognize early
deterioration.

The aim of this research is to investigate how algorithm
development techniques (selection of training, testing and
validation data set) can affect performance using a publicly
available data set.
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Motivation

Figure: Motivation
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Our Approach: Data

Figure: Multi-parameter Intelligent Monitoring In Intensive Care Database
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Our Approach: Selection of Training, Testing and
Validation Data Set

Figure: Training, Testing and Validation Data Set
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Our Approach: Observation, Gap and Target Window

Figure: Observation, Gap and Target Window
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Our Approach: Algorithms

Figure: Feature Selection
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Our Approach: Medical Emergency Team Activation
(MET)– True Positive

Figure: Example of a ’true positive event’
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Our Approach: Medical Emergence Team Activation
(MET)– True Negative
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Our Approach: Decision Tree

Figure: Example of a decision tree for MET activation
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Our Approach: Support Vector Machine

Figure: Support Vector Machine
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Our Approach: National Early Warning Score

Figure: Thresholds for different vital signs for different score using
NEWS.

True positive using NEWS:
If any of the vital signs reaches the threshold of 3 for 10
minutes.
If the cumulative score reaches 5 for 10 minutes.
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Results: Sensitivity
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Figure: Sensitivity for different approaches.
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Results: Specificity

Training Size
500-1 500-2 500-3 500-4 1000-11000-2 1500 2000

S
pe

ci
fic

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Decision Tree

Training Size
500-1 500-2 500-3 500-4 1000-11000-2 1500 2000

S
pe

ci
fic

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Support Vector Machine

Figure: Specificity for different approaches.
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Results: Area Under The Curve
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Figure: Area under the curve (AUC) for decision tree.
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Results: Summary

With a fixed training set, there is much variability in the
performance of the algorithms depending on the random split
for training and testing.

Increasing the number of records in the training set did not
necessarily increase algorithm sensitivity.

The ’best’ algorithm using the test sets is not necessarily the
best algorithm for an ’independent validation set’.

Future work to improve early warning patient monitoring
algorithms should investigate:

Key signal features to include in the algorithms.
Alternative techniques to combine information from multiple
sources.
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Conclusion: Summary

Motivation

Background

Detection of Affect, RACS 2013 (Best Paper Award)

Detection of Pain, COMPSAC 2015

Blood Pressure (Identification of Early Markers of Hemorrhage), (EMBC 2014)

Hemoglobin Level, Collaboration with Blood Center of Wisconsin

Evaluation for Application in Clinical Setting, Collaboration with the FDA

Conclusion
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Heart Rate, Oxygen Saturation and Perfusion Index
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Motivation

Smart phones with optical sensors have created new
opportunities for low cost and remote monitoring of vital signs.

We propose to find vital signs from the video image captured
by a smart phone with the flash light of the camera on.
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Our Approach: Time series data
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Figure: Red, Green and Blue component varying from frame to frame.
The horizontal axes represent number of frame and vertical axes
represent pixel value (between 0 and 255)
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Our Approach: Heart Rate

Figure: Heart rate can be calculated using the formula
HR = FrameRate∗60

NumberOfFramesBetweenTwoPeaks
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Our Approach: Perfusion Index

Figure: Proposed approach for perfusion index which is defined as the
pulse strength
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Our Approach: Oxygen Saturation

Figure: Proposed approach for oxygen saturation which is defined as the
ration between oxygenated hemoglobin and total hemoglobin.
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Results: Heart Rate

Figure: Comparison of Results With Our approach and Pulse Oximeter.
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Results: Regression Model for Perfusion Index

Figure: It takes a polynomial of degree 5 for polynomial fit of perfusion
index for 9 persons with ninety percent data fit. b) Only a linear equation
explains ninety percent data for one person.
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Results: Regression Model for Oxygen Saturation

Figure: a) It takes a polynomial of degree 5 for peripheral oxygen
saturation for 9 persons with only forty three percent data fit. b) Only a
quadratic equation explains eighty percent data for one person.
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Results: Summary

Heart rate can be calculated from video images with high
accuracy.

A personalized model for oxygen saturation and perfusion
index can be developed with good accuracy.

A validation study is needed for clinical application.
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Eigenvalues Contd.

This is the basis for the algorithms used for smart monitoring
of health parameters.

Principal component analysis and mixing rate of Markov chain
both are based on this very interesting property.
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Mixing Rate or Second Largest Value of Markov Chain

The largest eigenvalue of a Markov transition matrix is 1.

The second largest eigenvalue of the matrix determines how
fast the chain would converge to the limit distribution.

The second largest eigenvalue is called the mixing rate of the
Markov chain.
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Näıve Bayes Fusion

Given a problem with K classes and C different classifiers, λi ,
i = 1, ...,C we like to infer the true class label ω, given the
observation x . Assuming that for each classifier λi we have a
predicted class label ωk , where k = 1, ...,K then the true class
label can be derived as follows:

P(ω|x) ≈ P(ω|ωk , λi )P(ωk |λi , x)P(λi |x)

Probabilities P(ω|ωk , λi and P(λi |x) are used to weight the
combined decision and can be approximated from the confusion
matrix of classifier λi .
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Input and Output Pain Level Distribution: Subject 3
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(a) Input and output pain level
distribution using SVM
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(b) Input and output pain level
distribution using SVM

Figure: Input and output pain level distribution
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Testing

New Image is projected on the Eigenspace

A new weight vector is calculated

Closest weight vector is found from the training image

The pain label of the training image corresponding to the
weight vector is returned
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Case Study 3: Pig 174

One hemorrhage

17.8 mL/min equivalent to 0.3 mL/min/kg
Weight 59.3 kg
Hemorrhage is started around an hour after Protocol 1
Protocol 1 of this experiment is done to evaluate the effect of
vasoconstrictors (Phenylephrine, PHP)
Nexfin data (such as noninvasive blood pressure) are present
First and only hemorrhage: total time 57 minutes
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Change of Signals for the Pig 174
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Case Study 4: Pig 404

Seven different hemorrhages
Protocol 1

60 mL/min equivalent to 2 mL/min/kg (4 hemorrhages)
30 mL/min equivalent to 1 mL/min/kg
10 mL/min equivalent to 0.3 mL/min/kg

Hemorrhage to death

3 mL/min equivalent to 0.1 mL/min/kg

Weight 30 kg
Protocol 1 of this experiment is done to evaluate the effect of
Hextend bolus on various types of hemorrhages
All the hemorrhages except the last one is part of protocol one
The last hemorrhage is a 5 hour long hemorrhage
First hemorrhage: total time 2.5 minutes
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Change of Signals for the Pig 404
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Eigenvalues of Markov Chain: Example Continued

For the previous transition matrix, the normalized eigenvector
corresponding to 1 is,

π =

0.7014
0.2899
0.0087


In our case

P100 =

0.7014 0.7014 0.7014
0.2899 0.2899 0.2899
0.0087 0.0087 0.0087


Each column of the probability distribution becomes the
eigenvector normalized.
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Research to Identify Facial Expression

Facial Action Coding System [Ekman, 2002]

Image processing techniques using machine learning
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Case Study 2: Pig 517

5 different hemorrhages

21 mL/min or 1 mL/min/kg
Weight 21 kg
The last 4 hemorrhages use closed loop fluid control
First hemorrhage: total time 9.5 minutes
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Change of Signals for the Pig 517
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